这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
        第1集:在表达式中看到结构 
        1.1:解释表达式的结构。
        KY.HS.A。1:根据上下文解释表示数量的表达式。
        
        KY.HS.A.1。a:解释表达式的部分内容,如项、因子和系数。
        
         
          深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。
           
         
          确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。
           
         
          来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。
           
         
          你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!
           
         
          选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。
           
         
        KY.HS.A.1。b:在给定上下文的情况下,通过将一个或多个部分视为单个实体来解释复杂的表达式。
        
         
          利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。
           
         
          使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。
           
         
          深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。
           
         
          探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。
           
         
          通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。
           
         
          改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。
           
         
          将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。
           
         
        KY.HS.A。2: : Use the structure of an expression to identify ways to rewrite it and consistently look for opportunities to rewrite expressions in equivalent forms.
        
         
          选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。
           
         
          不爽餐厅正在招人!作为这家水下小酒馆的新厨师,你将学习操作代数表达式的基本知识。学习如何使用交换性和结合性属性生成等价表达式,如何处理讨厌的减法和除法,以及如何识别等价和非等价表达式。
           
         
          在这篇等价代数表达式i的后续文章中,继续你在海底烹饪世界的迅速崛起,通过向前和反向使用分配律来制作等价表达式,根据等价对表达式进行排序,并亲自协助暴躁厨师自己进行一个将给他(也许还有你)带来名利的项目。
           
         
          选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。
           
         
          选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。
           
         斧头 2 +bx +c 
          用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
          选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。
           
         
          通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。
           
         
          将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。
           
         
          将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。
           
         
          来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。
           
         
          你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!
           
         
          选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。
           
         
          解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。
           
         
          将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。
           
         
        1.2::写出等价形式的表达式来解决问题。
        KY.HS.A。3:选择并产生一个表达式的等效形式,以揭示和解释表达式所代表的量的性质。
        
        KY.HS.A.3。答:写出给定多项式的标准形式,并确定项、系数、次、领先系数和常数项。
        
         
          使用面积模型添加多项式。使用逐步反馈来诊断任何错误。
           
         
          将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。
           
         
        KY.HS.A.3。b::因式分解一个二次表达式来显示它所定义的函数的零点。
        
         
          选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。
           
         斧头 2 +bx +c 
          用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
          通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。
           
         
        使用指数的属性重写指数表达式。
        
         
          选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。
           
         
          选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。
           
         
          选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。
           
         
        KY.HS.A.3。d::用二次表达式补全平方,以显示它所定义的函数的最大值或最小值。
        
         
          将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。
           
         
        第2集::多项式和有理表达式的算术 
        2.1::对多项式进行算术运算。
        KY.HS.A。5:加,减,乘多项式。
        
         
          探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。
           
         
          使用面积模型添加多项式。使用逐步反馈来诊断任何错误。
           
         斧头 2 +bx +c 
          用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
        2.2:了解多项式的零与因子之间的关系。
        KY.HS.A。6:了解并应用余数定理。
        
         
          对多项式进行除法,方法是将正确的数拖到正确的位置进行综合除法。比较解释多项式除法与合成除法。
           
         
          创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。
           
         
        2.2.1.2::对于一个多项式??(??)和一个数字?? ?,余数除以??- ? ???(a),那么??(??)= 0当且仅当(?? ?- ??)是??(??)的因子。
        
         
          对多项式进行除法,方法是将正确的数拖到正确的位置进行综合除法。比较解释多项式除法与合成除法。
           
         
          创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。
           
         
        KY.HS.A。7:当适当的因式分解可用时,识别多项式的根。知道这些根变成了对应多项式函数的零点(x截距)。
        
         
          研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
          创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。
           
         
          通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。
           
         
          将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。
           
         
        2.3::用多项式恒等式来解决问题。
        KY.HS.A。8:证明多项式恒等式,并用它们来描述数值关系。
        
         
          选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。
           
         
        KY.HS.A。9:了解并应用二项式定理,对正整数n展开(x + y)^n的x和y幂,其中x和y是任意数,系数由帕斯卡三角确定。
        
         
          利用树形图、条形图和直接计算,找出二项实验中若干成功或失败的概率。
           
         
        2.4:重写有理表达式。
        KY.HS.A。10:把简单的有理表达式改写成不同的形式。
        
         
          对多项式进行除法,方法是将正确的数拖到正确的位置进行综合除法。比较解释多项式除法与合成除法。
           
         
        第3集::创建方程 
        3.1:创建描述数字或关系的方程。
        KY.HS.A。12:在一个变量中创建方程和不等式,并用它们来解决问题。
        
         
          用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。
           
         
          利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。
           
         
          深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。
           
         
          解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。
           
         
          通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。
           
         
          利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。
           
         
          用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。
           
         
          用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。
           
         
          利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。
           
         
          用数轴上的动态箭头解一个包含小数的方程。
           
         
          解决一个变量的一步不等式。把解画在数轴上。
           
         
          选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。
           
         
          把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。
           
         
        KY.HS.A。13:创建两个或多个变量的方程来表示数量之间的关系;用标尺和标尺在坐标轴上画出方程。
        
         
          用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。
           
         
          尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。
           
         
          把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。
           
         
          深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。
           
         
          确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。
           
         
          比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。
           
         
          将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。
           
         
          将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。
           
         
          将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。
           
         
          比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          用数轴上的动态箭头解一个包含小数的方程。
           
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
          用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
            (x ,y ) 点是一个方程的解,或两个方程组的解。
           
         
          解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。
           
         
          将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。
           
         
          把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。
           
         
        KY.HS.A。在建模上下文中创建一个方程组或不等式系统来表示约束。在上下文中将对应系统的解决方案解释为可行或不可行的选项。
        
         
          利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。
           
         
          利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。
           
         
          解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。
           
         
          将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。
           
         
        KY.HS.A。15:重新排列公式来解决一个文字方程,突出一个感兴趣的量,使用与求解方程相同的推理。
        
         
          使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。
           
         
          选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。
           
         
        第4集:用方程和不等式推理 
        4.1:将解方程理解为推理的过程,并解释推理过程。
        KY.HS.A。从原方程有解的假设开始,从上一步中断言的数字相等出发,按如下方式理解求解简单方程的每一步。构造一个可行的论证来证明一个解决方法。
        
         
          不爽餐厅正在招人!作为这家水下小酒馆的新厨师,你将学习操作代数表达式的基本知识。学习如何使用交换性和结合性属性生成等价表达式,如何处理讨厌的减法和除法,以及如何识别等价和非等价表达式。
           
         
          在这篇等价代数表达式i的后续文章中,继续你在海底烹饪世界的迅速崛起,通过向前和反向使用分配律来制作等价表达式,根据等价对表达式进行排序,并亲自协助暴躁厨师自己进行一个将给他(也许还有你)带来名利的项目。
           
         
          用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。
           
         
          用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。
           
         
          有没有时候你希望自己能逃离所有人,只是一个人呆着?来见见我们的变量朋友,一个真正的孤独者,他不喜欢系数和相邻项。学习如何使用逆来分离变量-解决代数方程的基本技能。
           
         
          解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          用数轴上的动态箭头解一个包含小数的方程。
           
         
          选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。
           
         
          选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。
           
         
        KY.HS.A。17:解决和证明方程在一个变量。证明解决方案,并举例说明如何出现无关的解决方案。
        
         
          将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。
           
         
        KY.HS.A.17。答:解单变量比例形式的有理方程。
        
         
          从百分比和整体中找到部分,从部分和整体中找到百分比,或者用图形模型从部分和百分比中找到整体。
           
         
          使用图形模型完成一个比例。使用计数器填充给定分子和分母中的单元格。使用可视化模式确定在缺失的分子或分母中放入多少计数器。
           
         
          将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。
           
         
        KY.HS.A.17。b:用一个变量解激进方程。
        
         
          将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。
           
         
        4.2:在一个变量中求解方程和不等式。
        KY.HS.A。18:解一个变量的线性方程和不等式,包括系数用字母表示的文字方程。
        
         
          使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。
           
         
          探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。
           
         
          解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。
           
         
          利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。
           
         
          用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。
           
         
          用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。
           
         
          有没有时候你希望自己能逃离所有人,只是一个人呆着?来见见我们的变量朋友,一个真正的孤独者,他不喜欢系数和相邻项。学习如何使用逆来分离变量-解决代数方程的基本技能。
           
         
          解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          用数轴上的动态箭头解一个包含小数的方程。
           
         
          选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。
           
         
          解决一个变量的一步不等式。把解画在数轴上。
           
         
          选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。
           
         
        KY.HS.A。19:解一元二次方程。
        
        KY.HS.A.19。答:根据方程的初始形式,通过取平方根、二次公式和因式分解来求解二次方程。当二次公式给出复解时,把它们写成实数a和b的±bi。
        
         
          选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。
           
         斧头 2 +bx +c 
          用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
          确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。
           
         
          通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。
           
         
          利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。
           
         
        KY.HS.A.19。b:使用平方补全法将x中的任意二次方程转化为(x - p)²= q形式的方程,且具有相同的解。由这个形式推导出二次公式。
        
         
          利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。
           
         
        KY.HS.A.19.c::通过补全平方来解二次方程。
        
         
          选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。
           
         斧头 2 +bx +c 
          用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。
           
         x 2 +bx +c 
          用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。
           
         
          确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。
           
         
          利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。
           
         
        4.3:解方程组。
        KY.HS.A。20: : Solve systems of linear equations in two variables.
        
        KY.HS.A.20。答:要知道,由两个变量的两个方程组成的方程组与用一个等价方程代替一个原方程形成的新方程组具有相同的解。
        
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。
           
         
        KY.HS.A.20。b:用图解决线性方程组,代换和消去,重点关注双变量的线性方程组。
        
         
          尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
          用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
            (x ,y ) 点是一个方程的解,或两个方程组的解。
           
         
          解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。
           
         
        KY.HS.A。22: : Use matrices to solve a system of equations.
        
        KY.HS.A.22。答:将线性方程组表示为向量变量中的单个矩阵方程。
        
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
        KY.HS.A.22。b:如果一个矩阵存在,求它的逆。
        
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
        KY.HS.A.22.c::使用矩阵求解线性方程组(使用3 × 3或更大维矩阵的技术)。
        
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
        4.4:图形化地表示和解决方程和不等式。
        KY.HS.A。23: : Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane.
        
         
          用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。
           
         
          尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。
           
         
          把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。
           
         
          将椭圆的方程与其图形进行比较。改变椭圆方程的项,并检查图形如何响应变化。拖动顶点和焦点,探索它们的勾股定理关系,并发现string属性。
           
         
          将双曲线方程与其图形进行比较。改变双曲线方程的项。检查双曲线及其渐近线的图形如何响应变化。
           
         
          探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。
           
         
          比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。
           
         
          将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
          用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
            (x ,y ) 点是一个方程的解,或两个方程组的解。
           
         
          解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。
           
         
          将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。
           
         
        KY.HS.A。24: : Justify that the solutions of the equations f(x) = g(x) are the x-coordinates of the points where the graphs of y = f(x) and y = g(x) intersect. Find the approximate solutions graphically, using technology or tables.
        
         
          尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。
           
         
          比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
          用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
            (x ,y ) 点是一个方程的解,或两个方程组的解。
           
         
          将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。
           
         
        4.4.2.1:学生证明方程的解,其中包括??(??)和/或??(??)是线性、多项式、有理、绝对值、指数和对数函数的情况。
        
         
          尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。
           
         
          比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。
           
         
          通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。
           
         
          探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。
           
         
          用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
            (x ,y ) 点是一个方程的解,或两个方程组的解。
           
         
          将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。
           
         
        KY.HS.A。25: : Graph linear inequalities in two variables.
        
         
          利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。
           
         
          利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。
           
         
          将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。
           
         
        KY.HS.A.25。a::将线性不等式的解画成半平面(在严格不等式的情况下不包括边界)。
        
         
          利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。
           
         
          将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。
           
         
        KY.HS.A.25。b::将线性不等式系统的解集画成相应半平面的交点。
        
         
          利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。
           
         
          将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。